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844 DÖRING et al 26 MARCH 2019 x VOLUME 3, NUMBER 6

.For personal use onlyon March 20, 2019. by guest  www.bloodadvances.orgFrom 



expression increased substantially in moDCs (Figure 3E-F). This
observation was counterintuitive, considering (1) the decrease
in TAP activity, (2) the prolonged half-life of MHC I surface
expression, and (3) the enhanced antigen-presentation capacity
of DCs. Interestingly, in monocytes, TAP1 did not colocalize with
the cis Golgi-specific marker GM130 (supplemental Figure 2) or
with the lysosomal marker LAMP1 or the ER-specific marker
calnexin (CNX; Figure 4A, top row). Instead, TAP1 colocalized
with the early endosomal marker EEA1 (Figure 4A, top row). In
imDCs, TAP1 did not colocalize with EEA1 but showed moder-
ate and strong colocalization with LAMP1 and CNX, respectively
(Figure 4A, middle row). Similarly, mDCs showed colocalization of
LAMP1/TAP1 and CNX/TAP1 (Figure 4A, bottom row), but not of
GM130/TAP1 (supplemental Figure 2) and EEA1/TAP1 (Figure 4A,
bottom row). Of note, the immunolabeling patterns of LAMP1 and
CNX looked overall very similar in DCs. However, upon closer
inspection, it became evident that in DCs, the immunolabeling of
LAMP1 appeared in small distinct vesicles and was less homoge-
neously dispersed throughout the cytoplasm when compared with
the immunolabeling of TAP1 and CNX. The Pearson coefficient as a
measure of colocalization was significantly higher for EEA1/TAP1
in monocytes than in imDCs and mDCs (Figure 4B, left panel).
Correspondingly, the Pearson’s coefficients for LAMP1/TAP1 and
CNX/TAP1 in imDCs and mDCs were substantially higher than in
monocytes (Figure 4B, middle and right panels). Thus, during
differentiation of monocytes to imDCs, TAP1 relocates from EEA11

compartments primarily to the CNX1 ER and partially to LAMP11

compartments. This was further confirmed in transduced moDCs
expressing a TAP1mVenus fusion protein (supplemental Figures 3
and 4). Of note, the endogenous subunit TAP2 strictly colocalized
with overexpressed TAP1mVenus (supplemental Figures 3 and 4).
Expression of calnexin-mCherry (CNXmCherry), calreticulin-mCherry
(CRTmCherry), and tapasin-mCherry (TSNmCherry) in imDCs and
mDCs revealed that the PLC components TSN, CRT, and TAP1
colocalized in the CNX1 compartment (supplemental Figures 3
and 4). In immunoelectron microscopy, we identified subcellular
organelles morphologically and immunolabeled TAP1 with an mAb
that was coupled with 15-nm gold particles. In monocytes, TAP1
was detected in the endosomes, but not in the ER (Figure 4C-D).
Moreover, in monocytes, TAP located outside of the CRT1 compart-
ment in EEA11 organelles (supplemental Figure 5). STORM demon-
strated that in mDCs, EEA1 and GM130 did not colocalize with TAP1
(Figure 4E, first row; supplemental Figure 6). Interestingly, whereas
confocal microscopy data implied a partial colocalization of LAMP1
and TAP1, STORM revealed a strict colocalization of LAMP1 and
TAP1 (Figure 4E, second row). Additionally, STORM analysis
indicated that the colocalization of CNX and TAP1 detected in

confocal microscopy derived from very closely adjacent, but still
discrete, positioning (Figure 4E, third row). This may be explained
by the fact that CNX is an ER-membrane protein, but not an integral
component of the PLC. As a positive control for colocalization with
TAP1, transduced mDCs expressing the HCMV-derived TAP
inhibitor US6 were studied. As previously reported,49 TAP1 and
US6 showed strict colocalization (supplemental Figure 6). Consis-
tently, we also found oligosaccharyl transferase (OST) in endosomes
of monocytes (Figure 4F), which is an integral part of the mammalian
ER translocon. OST mediates N-core glycosylation of proteins in the
ER lumen and is essential for trapping the reporter peptide NST-F
used in the TAP-dependent peptide compartmentalization assay.
Thus, both STORM and immunoelectron microscopy further
confirmed the results obtained by confocal microscopy, ie, that in
monocytes, TAP1 localizes to endosomes and in DCs to lysosomes
and the ER (Figure 4G). Similar observations were made for TAP2
immunolabeling (data not shown). Interestingly, ex vivo–isolated
BDCA31 DCs showed a subcellular TAP localization similar to
that detected in imDCs and mDCs (supplemental Figure 7).
Hence, the gain of T-lymphocyte restimulation capacity, the
increase in surface MHC I residence time, and the decrease in
TAP-dependent peptide compartmentalization during moDC differ-
entiation are correlated with a subcellular relocation of TAP.

Discussion

Here, we provide evidence that the acquisition of T-lymphocyte
restimulation capacity during moDC differentiation is associated
with (1) an increase in the residence time of cell-surface MHC I
molecules, (2) a decrease in TAP-dependent peptide compart-
mentalization, (3) an increase in TAP expression, and (4) TAP
relocation from early endosomes in monocytes to the ER and
lysosomes in moDCs. Thus, in moDCs, TAP activity seems to be
regulated not by its abundance, but rather by its subcellular loca-
tion and eventually by the presence of accessory proteins at the
corresponding subcellular sites.

We found that antigen-pulsed monocytes conferred antigen-specific
T-lymphocyte restimulation after differentiation to DCs. While this is
in accordance with several previous reports,13,50,51 only one recent
publication described electron-dense compartments in which anti-
genic peptides were stored during moDC differentiation.12 This
motivated us to further address the cell-intrinsic T-lymphocyte
restimulation capacity of monocytes. We chose donors expressing
the HLA-A*02 allele that was previously shown to display its peptide
repertoire in a partially TAP-independent manner. The HLA alleles
A*01, A*03, A*11, A*24, B*15, and B*27 are loaded primarily in a
TAP-dependent manner,52-54 whereas the alleles A*02, A*23, B*07,

Figure 3. TAP-dependent peptide compartmentalization wanes during moDC differentiation (A) TAP-dependent peptide compartmentalization of monocytes,

imDCs, and mDCs. MFI values of the histograms are indicated (left). Compartmentalization was performed in the presence of adenosine triphosphate (ATP; red line) and

adenosine diphosphate (ADP; blue filled) to control for unspecific accumulation. Percent transport of monocytes, imDCs, and mDCs normalized to MFI values of monocyte

adenosine triphosphate samples (means 6 95% CI, n 5 10). ***P # .0001; Kruskal-Wallis test with Dunn’s correction for multiple comparisons. (B) TAP-dependent

peptide compartmentalization during differentiation of monocytes to mDCs (1 of 4 similar experiments is shown [left]). Percent TAP-dependent peptide compartmental-

ization (means 6 95% CI, n 5 8 [right]). ***P # .0001; **P # .001; Kruskal-Wallis test with Dunn’s correction for multiple comparison. (C) ICP47AT565-mediated

inhibition of TAP-dependent peptide compartmentalization (means 6 95% CI, n 5 6) in mDC. For ICP47AT565, a 50% inhibitory concentration value of 34 nM was

calculated with a 95% CI from 24 to 46 nM. (D) Bright field images of monocytes, imDCs, and mDCs. Blue 49,6-diamidino-2-phenylindole stain indicates the nucleus,

whereas the white dashed line indicates the cell shape. Scale bars, 5 mm. (E) Intracellular TAP1 staining in monocytes, imDCs, and mDCs (means 6 95% CI, n 5 5).

(F) TAP1 immunoblotting of monocytes, imDCs, and mDCs. IT, isotype staining; ns, not significant.
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and B*08 are rather independent of TAP.55-58 Of note, US6-expressing
moDCs carrying A*02/B*07 alleles also showed slightly reduced
MHC I surface levels (supplemental Figure 8A), while the MHC II
levels were unaffected (supplemental Figure 8B), suggesting a
partial dependence of the A*02/B*07 alleles on TAP. We used

HLA-A*021 HCMV pp65 pulsed monocytes and imDCs to stimulate
preexpanded pp65-specific T lymphocytes. Only pp65-pulsed imDCs,
but not pulsed monocytes activated preexpanded pp65-specific
T lymphocytes, as shown by IL-2 and TNF-a expression after 24 hours
of coculture. Only when pulsed monocytes were differentiated to
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Figure 4. TAP location changes from endosomes to the ER

and lysosomes. (A) Immunofluorescent staining of the early endo-

somes (EEA1), lysosomes (LAMP1), the ER membrane marker

calnexin (CNX), and TAP1 in monocytes, imDCs, and mDCs. Scale

bars, 5 mm. (B) Statistical analysis of Pearson coefficients obtained in

4 independent experiments (white circles represent donors; the mean

is shown as a black line). ***P # .0001; **P # .001; *P # .05;

Kruskal-Wallis test with Dunn’s correction for multiple comparison.

(C) Electron microscopy of monocytes. Scale bar, 500 nm. (D)

Magnification of the area indicated in panel C. Scale bar, 150 nm. (E)

Stochastic optical reconstruction microscopy (N-STORM) of mDCs

stained for EEA1, LAMP1, CNX, and TAP1. Scale bars, 1 mm; CNX/

TAP1 photo scale bar, 0.5 mm. One of 2 independent experiments is

shown. (F) Statistical analysis of Pearson coefficients obtained in 2

independent experiments of OST and TAP1 costaining (white circles

represent donors; the mean is shown as a black line). (G) Model of

TAP relocalization during moDC differentiation. TAP is expressed in

EEA11 endosomes of monocytes and relocalizes to the ER (CNX1)

and LAMP11 lysosomes in moDCs. The size of TAP1/2 heterodimer

in the cartoon is according to its protein expression level and inversely

correlates with its activity. The nucleus is shown in blue and the Golgi

apparatus as brown tubular structures. E, endosome, TAP1 (15-nm

gold particles); ER, ER membrane stacks; L, lysosome; MC, mitochon-

dria; NC, nucleus.
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DCs, as indicated by our experiments with the IE1 antigen, they
were able to confer T-lymphocyte stimulation. This suggested that
monocytes were readily taking up protein from which the anti-
genic peptides derived, but that they were not able to restimulate
T lymphocytes. Given the high functional plasticity of monocytes that
are abundantly present in human blood compared with their differen-
tiated counterparts, it is likely that monocytes will undergo phenotypic
changes more readily in response to changes in the microenvironment.

We further deciphered the changes in antigen presentation with
respect to antigen compartmentalization between monocytes and
moDCs. TAP activity decreased in monocytes already after 24 hours
of differentiation and remained low in moDCs. At the same time, the
cell-surface residence time of MHC I molecules increased on DCs.
At first glance, this seems counterintuitive, since APCs should not
be restricted in loading of antigenic peptides. However, it is likely
that high TAP activity in monocytes favors a decreased residence
time of immunogenic peptide/MHC I complexes on the cell surface,
which may affect T-lymphocyte stimulation. It is also conceivable
that in DCs, the peptide compartmentalization is restricted to
compartments that are picked up weakly in our assay, since the
accumulation of the peptide relies on its glycosylation to avoid
retrotranslocation into the cytosol.

Since antigen-pulsed monocytes were not able to restimulate pre-
expanded CTLs, but retained the antigen for T-lymphocyte pre-
sentation once differentiated to moDCs (Figure 1B-C), a change
of the PLC localization in monocytes and DCs seemed likely. In
monocytes, TAP was found in early endosomes, whereas colocaliza-
tion with markers for the ER or lysosomes was not, or only very
weakly, detected. Additionally, OST, a central component of N-linked
protein glycosylation and a key element in our TAP activity assay, was
also found in early endosomes (Figure 4F). This implies that monocytes
contain specialized endosomal compartments that share certain ER-
specific functions such as N-core glycosylation. The concept that
endosomes and ER establish contact sites for signal transduction
has already been shown in cell lines59 and offers an explanation of
how ER-resident proteins find their way to endosomes. Therefore, it
is possible that in monocytes, the antigen processing and loading
pathways are on standby mode in cellular storage compartments
and relocate to the ER and, to some degree, to lysosomes in
moDCs. To provide further evidence connecting changes in TAP
localization with the T-lymphocyte restimulation capacity, it would
be desirable to visualize the fate of intracellular antigens and
investigate the restimulation capacity when TAP is sequestered
in endosomes during moDC differentiation. The exact share of
TAP1 located to LAMP11 compartments in the overall TAP1
pool in DCs also needs to be studied further. However, all lines of
evidence (confocal microscopy of TAP1 immunolabeled by a
monoclonal antibody, TAP1 expressed as a fusion protein, and
detection of TAP1 by high-resolution microscopy) show that in
moDCs, a subset of the TAP1 pool is present in LAMP11

compartments. The interaction between the ER and late endosomes
or lysosomes has been shown to take place between a sensor
protein on late endosomes and proteins within the ER membrane.60

This could be a possible route for the trafficking of TAP1 and other
components of the PLC to late endosomes/lysosomes.

Morphological changes that take place during moDC differen-
tiation, including elongation of the cell body, development of
dendrites, and increased TAP expression, have been reported
before.27,41,61 We add furthermore a decline of TAP activity and

its relocation from early endosomes to the ER and lysosomes
that correlates with an enhanced surface residence time of
peptide/MHC I complexes.

As mentioned earlier, all human DC subsets derived from different
origins can cross-present antigens in vitro upon stimulation.34-38

In vivo, classical DCs are considered the optimal pAPCs.62 However,
monocytes also play a crucial role in antigen presentation in vivo.
They differentiate to DCs once recruited to the site of inflammation,
where they readily take up antigens to cross-prime T lymphocytes.
This has been shown, for example, upon microbial stimulation, where
murine moDCs localize to the T-lymphocyte area of lymph nodes,
where they showAPC function similar to classical DCs.62,63Whether
comparable TAP activity and TAP localization can be observed in
these in vivo DC subsets or whether this is a moDC-restricted
phenomenon remains to be studied.

Taken together, our data indicate that during DC differentiation,
TAP-dependent intracellular antigen compartmentalization dimin-
ishes and that subcellular TAP location changes. Efficient antigen
presentation is associated with a reduction in MHC I turnover, thus
assuring spatiotemporal separation of antigen uptake and antigen-
dependent T-lymphocyte stimulation. Our discoveries provide a
new view on antigen transport routes and further highlight the role
of monocytes as potent antigen accumulators.
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