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Figure 3. The dependence of neutrophils on b2 integrins for migration to peritoneum varies with stimulus. (A-B) WT and CD182/2 mice were injected

intraperitoneally with E coli (107 CFU per mouse) or IL-1b (5 ng per mouse). Three hours later, PMNs in peritoneum lavage (A) and blood (B) were counted by FACS using

counting beads (left histograms). (C) Percentage of Gr-1/Ly6C-high PMNs among CD451 cells in WT and CD182/2 bone marrow (left), blood (middle), and peritoneum lavage

(right) was evaluated by FACS. Representative of at least 5 mice. (D) Ratio of migrated-to-circulating PMNs, allowing an estimation of the relative PMN migration in WT and

CD182/2 mice; n 5 3-8 mice per group. (E) PMNs were enriched from WT and CD182/2 marrow, stained with PKH67 (green) or CVm (far-red), and mixed at a 1:1 ratio (colors

for WT and CD182/2 cells varied across experiments). Cells were injected IV into mice treated with E coli or IL-1b intraperitoneally 1 hour previously. Three hours after cell

injection, the presence of green PMNs (WT) and far-red PMNs (CD182/2) in peritoneal lavage was assessed by FACS. (F) Calculation of the ratio of migrated WT-to-CD182/2

PMNs allows an estimation of the b2 integrin dependency in these 2 models of peritonitis; n 5 13 mice per group. ***P # .001. FSC, forward scatter; SSC, side scatter.
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cytometry (Figure 4A). WT and CD182/2 neutrophils migrated
comparably in E coli peritonitis, and 1A8 treatment had no impact
on either population (Figure 4C). By contrast, in IL-1b peritonitis,
WT neutrophils showed a migratory advantage over CD182/2

neutrophils, but this difference was less marked in the 1A8- than
in the 2A3-treated group (P 5 .0137 vs P 5 .002) (Figure 4C).
Correspondingly, 1A8 altered the ratio of WT-to-CD182/2

migrated neutrophils only in IL-1b peritonitis (Figure 4D). These
results demonstrate that Ly6G ligation selectively impairs b2
integrin–dependent neutrophil migration.

Migratory blockade is associated with altered

interaction between Ly6G and b2 integrins

To understand how Ly6G ligation selectively interrupted integrin-
mediated migration, we characterized the association of Ly6G with
b2 integrins in our experimental animals. Confocal microscopy of
fixed peritoneal neutrophils from E coli– and IL-1b–treated mice
confirmed colocalization of these molecules on the neutrophil
surface, greater in E coli peritonitis than in IL-1b peritonitis
(Figure 5A). To further quantitate this change in spatial association,
we used FLIM. FLIM assesses the proximity between 2 molecules
via image-based quantitation of donor fluorescence lifetime, which
decreases upon FRET to an acceptor chromophore. As shown in
Figure 5B, the fluorescence lifetime t1 of the donor (anti-CD18)

decreased in the presence of 1A8 (anti-Ly6G, acceptor), confirm-
ing proximity of CD18 and Ly6G, most prominently in E coli
peritonitis. We then tested the effect of 1A8 on this molecular
interaction. Fresh bone marrow neutrophils were incubated with
1A8 or 2A3 with or without activation by LTB4; cells were then fixed
and imaged by FLIM. In the absence of 1A8, Ly6G and CD18
interacted more closely in activated than in resting neutrophils,
as reflected in decreased t1 (Figure 5C). However, 1A8 fully
abrogated this change (Figure 5C), suggesting that an altered
relationship between these molecules could contribute to the
migratory blockade observed in vivo.

Finally, we imaged neutrophil-endothelial interactions in exteriorized
cremaster muscle, a system in which the role of b2 integrins has
been intensively characterized.13,16,28 Among rolling cells tracked
for at least 15 seconds after CXCL1 injection, rates of initial arrest
were equal between isotype (32 of 33 cells [97%]) and 1A8 (37 of
38 cells [97%]). However, compared with isotype control, 1A8
markedly shortened the duration of endothelial residence induced
by IV injection of CXCL1, reflecting impairment of firm endothelial
attachment (postadhesion strengthening), a distinct integrin-mediated
phase of neutrophil transendothelial migration (Figure 6A;
supplemental Videos 1 and 2).1-3 Analysis of the leukocyte rolling
flux in postcapillary venules confirmed that the stability of neutro-
phil firm adhesion was impaired by Ly6G ligation, as return to
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prestimulation leukocyte rolling flux occurred more rapidly in 1A8-
treated mice (Figure 6B). Thus, consistent with the studies in
arthritis, pneumonitis, and peritonitis, Ly6G ligation modulated
integrin-dependent behavior in neutrophils directly visualized in vivo.

Discussion

Neutrophil migration into tissues is a complex process. In most
contexts, b2 integrins play a key role, mediating firm adhesion as
well as diapedesis. Yet, studies using genetically deficient animals,
blocking antibodies, and pharmacologic manipulation confirm that
the integrin contribution can be surprisingly variable. The principles
governing when integrins are required and when not remain to be
fully elucidated. The present studies confirm that dependence of
neutrophil migration on b2 integrins ranges from largely required

(the inflamed joint) to largely dispensable (lung) and can vary with
stimulus. We find further that ligation of the ubiquitously expressed
murine neutrophil protein Ly6G selectively antagonizes b2 integrin–
mediated migration, helping to define how this intervention alters
migration in some contexts but not others.15,19

Our data extend a substantial body of experimental literature
detailing the role of b2 integrins in neutrophil migration. Neutrophils
express the b2 integrins LFA-1 andMac-1, and, in lower abundance,
complement receptor 4 (CD11c/CD18). The role of LFA-1 and
Mac-1 in migration has been studied in many disease models.
Where published results diverge, it can be difficult to differentiate organ
and/or stimulus specificity from factors such as animal strain and
microenvironment. Because b2 integrins are expressed on many
lineages, and participate in neutrophil functions beyond endothelial
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adhesion (for example, lineage development, pathogen elimination,
apoptosis, and swarming), interpretation of differences between
WT and integrin-deficient animals can be challenging.13,23,25,29,30

Nevertheless, our observations concord with published data,
confirming that the role of b2 integrins in neutrophil migration
varies with site and stimulus. Our findings in peritoneum echo
those in the hepatic sinusoids, where sterile but not septic
inflammation displays integrin dependence.14 Collectively, these
studies highlight the plasticity of pathways mediating neutrophil
egress into tissues.

The present work further extends the understanding of the biology
of Ly6G. A small protein of;25 kDa, Ly6G is a member of the Ly6/
urokinase plasminogen activator receptor family of proteins and
is tethered to the cell surface via a glycosylphosphatidylinositol
linker.31 Ly6G is expressed in murine neutrophils regardless of their
localization or activation state.31-33 Eosinophils may also express
this protein at low levels.34 Ly6G exhibits a “3-finger fold” motif
stabilized by disulfide bonds, believed to create a docking site for
other molecules, although no counterligand has been identified.31

Ly6G is often targeted to deplete, visualize, or sort neutrophils,
using either 1A8 or the less specific RB6-8C5, which also recog-
nizes Ly6C and thus marks inflammatory monocytes and dendritic
cells.15,19,32,33,35 Ly6G-deficient neutrophils appear normal in num-
ber and function, with intact migration in LPS-induced peritonitis,
experimental autoimmune encephalomyelitis, Aspergillus fumigatus
lung infection, and skin inflammation20 as well as K/BxN serum
transfer arthritis (this study). Nevertheless, ligation of Ly6G with
either 1A8 or RB6-8C5 elicits functional consequences that
can include activation of intracellular signaling cascades and
anaphylaxis-like shock in tumor necrosis factor– or LPS-treated
mice.36-38 We find that Ly6G ligation alters its spatial association
with b2 integrins and impairs firm adhesion to activated endothe-
lium in cremaster muscle. The latter phenotype suggests compro-
mise of postadhesion strengthening, a phenomenon mediated
predominantly by LFA-1, whereas Mac-1 mediates adhesion-
associated intraluminal crawling.16,39

The present observations extend the similarities and con-
trasts between Ly6G and CD177.31,40,41 CD177 is another
glycosylphosphatidylinositol-anchored member of the Ly6/
urokinase plasminogen activator receptor protein family, and in
humans it is expressed predominantly by neutrophils.42,43 Like

Ly6G, CD177 resides on the cell surface in molecular associa-
tion with b2 integrins, and its ligation by specific antibodies
inhibits neutrophil migration.44-46 Intriguingly, adhesion blockade
resulting from CD177 ligation with the antibody MEM166 reflects
enhanced rather than diminished integrin-mediated adhesion, a
“leukadherin”-like immobilization mechanism mediated at least in
part through cell activation by signaling via the integrin itself.45

Whether Ly6G could engage a similar mechanism in a context-
dependent manner, or upon ligation via a different set of epitopes
than engaged by 1A8 and RB6-8C5, remains to be determined.
The identification of soluble or cellular counterligands for Ly6G
and CD177 will be essential to understanding their roles in health
and disease.

A further parallel between CD177 and Ly6G is the surprising
paucity of phenotype from CD177 deficiency. A CD177 allele
containing a stop codon acquired from a nearby pseudogene is
relatively common, such that 3% to 5% of the human population
lacks CD177 without evident phenotypic consequences.43,45,47,48

Mice deficient in Cd177 are relatively normal, exhibiting only a small
delay in neutrophil accumulation in S aureus–infected skin but not in
thioglycolate-induced peritonitis.49 Ly6G and CD177 may therefore
participate in both redundant or otherwise physiologically inconse-
quential mechanisms. However, their evolutionary preservation,
close interactions with surface integrins, and the striking conse-
quences induced by ligation suggest that they have physiological
functions yet to be identified.

We recognize strengths and limitations of these studies. Our data
reconcile apparently conflicting observations within the larger con-
text of studies into the role of b2 integrins in neutrophil migration.
Methodologically, adoptive transfer of WT and CD182/2 neutro-
phils enabled careful dissection of lineage-specific and cell-
intrinsic migratory requirements, overcoming the confounding
effects of aberrant neutrophil number and distribution in CD182/2

mice. Given the variability of neutrophil migration, we do not claim
that the selectivity of Ly6G ligation for integrin-mediated migration
extends to every context or that it explains the whole divergence in
observed findings. For example, although the role of b2 integrins in
neutrophil recruitment to intradermal S aureus has not to our
knowledge been defined, related studies and clinical experience
in patients with CD18 deficiency suggest that some contribution
is likely.12,19,50 We have not defined the molecular mechanism
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through which Ly6G ligation impedes integrin-specific migration,
including the functional consequences of the disrupted associa-
tion between Ly6G and CD18 identified by FLIM. Interestingly, we
found that Ly6G strongly interacts with CD18 on the neutrophil
surface after E coli treatment. This observation suggests that
the Ly6G/CD18 pathway could be activated by E coli as well.
However, in this model of septic inflammation, utilization of b2-
independent pathways could explain the absence of inhibition
induced by 1A8 treatment. Further study will be required to
clarify these pathways in physiological and pathophysiological
situations.

Although exclusively murine, our findings have therapeutic implica-
tions. Global impairment of neutrophil number and function likely
carries an unacceptable risk of infection, but selective impairment
of integrin-dependent neutrophil migration could potentially block
some neutrophil functions while preserving others. In this context, it
is especially intriguing that integrins contributed more to neutrophil
recruitment in sterile than in septic peritonitis, as previously shown
in liver.14 If this pattern holds true in other contexts, then interfer-
ence with integrin-mediated neutrophil migration could attenuate
pathogenic neutrophil infiltration while sparing at least a portion of
their defensive role.
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