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Figure 5. CD56

bright
DNAM-1

pos
, CD56

dim

DNAM-1pos , and CD56dim DNAM-1neg NK cell

populations display distinct gene expression

profiles. CD56brightDNAM-1pos, CD56dimDNAM-

1pos, and CD56dimDNAM-1neg NK cell subsets

were purified from healthy donor PBMCs, and their

gene expression profiles were analyzed by using

RNAseq. Four independent samples, each one

consisting of NK cell mRNAs pooled from 10 to

20 donors, were analyzed for each population. (A)

Relative expression of Ncam1 and Cd226 mRNAs

in reads per kilobase million (RPKM). Data were

analyzed with a 1-way ANOVA followed by

a Tukey multiple comparison post hoc test.

(B) Unsupervised principal component analysis

revealed 3 clusters corresponding to the 3 NK

cell populations (Benjamini-Hochberg corrected

P value, q 5 0.05). (C) Heat map and hierarchi-

cal clustering of the most differentially expressed

genes between the 3 populations (q 5 0.05).

Genes can be divided into 6 groups (A-F)

according to their pattern of expression. (D)

Heat map displaying selected NK cell-related

genes. (E) Heat map displaying selected genes

related to inflammation and immunosuppression.

***P , .001; ****P , .00001.
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cells derive from the CD56dimDNAM-1pos subset. Of note, the
lower proliferative capacity of CD56dimDNAM-1neg NK cells
excludes the possibility that a few contaminant CD56dimDNAM-
1neg cells may have overgrown in these cultures. Finally, the vast
majority of purified CD56dimDNAM-1neg NK cells conserved
a stable phenotype, indicating that this subset represents
a terminally differentiated stage that does not convert into any of
the 2 other NK cell subsets. Of note, the pattern of expression of
KIRs and CD57 in the 3 populations obtained postculture
matched the phenotypes shown in Figure 1 (supplemental
Figure 6B-C).

Telomere shortening is a process usually associated with cell
replication, and terminally differentiated/memory lymphocyte sub-
sets harbor shorter telomeres.7 Although no significant differ-
ence was observed, CD56brightDNAM-1pos cells had the longest
telomeres, whereas CD56dimDNAM-1neg had reduced telomeres
(Figure 6C). When analyzing NK cell apoptosis in 2 different assays,
we found that CD56dimDNAMneg NK cells were more resistant than
the other subsets to cytokine starvation (Figure 6D), whereas a high
proportion of CD56dimDNAM-1neg NK cells underwent apoptosis
when cultured with inflammatory cytokines (Figure 6E). Taken as
a whole, these results support a linear maturation pathway in which
CD56brightDNAM-1pos NK cells differentiate into CD56dimDNAM-
1pos NK cells that finally lose DNAM-1 expression to become
CD56dimDNAM-1neg NK cells.

Proportions of CD56dimDNAM-1pos and

CD56dimDNAM-1neg cell subsets are altered in the

peripheral blood of patients with

hematologic malignancies

We analyzed NK cell populations in the peripheral blood of a cohort
of patients diagnosed with HL or DLBCL. Total NK cell percentages
were reduced in the blood of patients with lymphoma compared
with healthy donors (Figure 7A-B). This finding might be explained
by a dramatic reduction of CD56dimDNAM-1pos NK cells in these
patients (Figure 7C). In patients with DLBCL, decreased percen-
tages in CD56dimDNAM-1pos NK cells among the whole NK
cell population were associated with increased percentages in
CD56dimDNAM-1neg NK cells; a similar trend, albeit not significant,
was observed in patients with HL. Overall, the ratio of CD56dimDNAM-
1pos NK cells over CD56dimDNAM-1neg NK cells was significantly
reduced in both HL and DLBCL patients (Figure 7D). Marker
analysis on the 3 NK cell populations revealed additional phenotypic
alterations of NK cells in HL and DLBCL patients (supplemental
Figure 7). An in vitro cytotoxicity assay against K562 target cells
confirmed the limited killing capacity of CD56brightDNAM-1pos and
CD56dimDNAM-1neg NK cells and indicated that the killing capacity
of these 2 subsets was equivalent between healthy donors and
patients with lymphoma (Figure 7E). Strikingly, the cytotoxic activity
of CD56dimDNAM-1pos cells was decreased in patients with HL and
DLBCL.

Discussion

We have identified a minor population of terminally differentiated NK
cells that are characterized by a lack of DNAM-1 expression. This
study expands to humans our previous findings that DNAM-1
expression patterns distinguish 2 mouse NK cell subsets with
specific functions and gene expression profiles.20

The question of subset correspondence between mouse and
human NK cells has recently been addressed by Crinier et al,10 who
used single-cell RNAseq to identify 2 NK cell subsets (NK1 and
NK2) conserved across organs and species. The direct comparison
of NK1 and NK2 signatures with our gene expression data set
confirmed the validity of our RNAseq analysis, with CD56brightDNAM-
1pos and CD56dimDNAM-1pos NK cells overexpressing the NK2 and
NK1 signatures, respectively (supplemental Figure 8A-B). Interest-
ingly, there was no correspondence between CD56dimDNAM-1neg

NK cells and any of the blood or spleen subsets defined by Crinier
et al, indicating that CD56dimDNAM-1neg NK cells constitute a new
NK cell subset.We suggest that, in both mouse and human, DNAM-1
expression might allow the definition of alternative NK cell subsets
that do not fall into the NK1/NK2 categories. Using the published
mouse DNAM-1neg NK cell signature,20 we have defined a 6-gene
DNAM-1neg NK cell signature conserved across species (supple-
mental Figure 8C).

In addition to a specific gene signature, human DNAM-1neg NK cells
share several functional characteristics with their mouse counter-
part: they arise from DNAM-1pos NK cells, they display limited
proliferative capacity, and they are poor producers of IFN-g and
GM-CSF. However, this report also highlights differences between
the 2 species. Although DNAM-1neg NK cells account for
approximately one-half of mouse splenic NK cells,20 DNAM-1neg

NK cells represent a minor population in the human peripheral
blood. In mice, DNAM-1neg NK cells are high producers of MIP
chemokines.20 By contrast, we found that in humans, MIP-
producing NK cells are defined by the expression of CD16,
regardless of whether they express DNAM-1. Finally, mouse DNAM-
1pos and DNAM-1neg NK cell subsets display equivalent cytotoxic
activity,20 whereas in humans, CD56dimDNAM-1pos NK cells are
much more potent killers than CD56dimDNAM-1neg NK cells.

The consensus that conventional NK cells originate via a linear
differentiation model has been challenged by some research
suggesting that CD56bright and CD56dim NK cells might belong to
different lineages.34 Our in vitro differentiation experiments confirm
the well-accepted linear model of NK cell maturation and add an
additional step: immature CD56bright NK cells give rise to
CD56dimDNAM-1pos NK cells that ultimately become CD56dimDNAM-
1neg NK cells. In agreement of the concept of a progressive
maturation program, we identified a group of genes (Figure 5C,
cluster E) showing high expression in CD56bright NK cells,
moderate expression in CD56dim DNAM-1pos cells, and low
expression in CD56dimDNAM-1neg. Nevertheless, we did not
completely rule out the possibility that some CD56dimDNAM-1neg

NK cells might directly arise from CD56bright NK cells. In this
regard, the low percentage of KIR1 cells and the common gene
expression program (Figure 5C, cluster D) shared by CD56brightDNAM-
1pos and CD56dimDNAM-1neg NK cells might be seen as an indication
of a differentiation pathway independent from CD56dimDNAM-1pos

NK cells.

Our data indicate that CD56dimDNAM-1neg NK cells are terminally
differentiated cells: their phenotype remains stable upon cytokine
stimulation, their telomeres are shorter than those of DNAM-1pos

NK cell subsets, and they are highly prone to apoptosis in
inflammatory microenvironments but more resistant to cytokine
withdrawal. However, surprisingly, only 20% to 30%ofCD56dimDNAM-
1neg NK cells express CD57, a marker commonly believed to mark
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one of the final steps in NK cell maturation.35-37 We propose that
loss of DNAM-1 on both CD56dimCD57pos and CD56dimCD57neg

NK cells represents an alternative maturation pathway that is
associated with the acquisition of immunomodulatory functions. In

this model, lower frequencies of CD57pos cells within the DNAM-
1neg population might be explained by the reduced proliferative
capacity of CD56dimCD57pos compared with CD56dimCD57neg

cells.35
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Figure 6. CD56
dim

DNAM-1
neg

NK cells are terminally differentiated. (A-B) CD56brightDNAM-1pos, CD56dimDNAM-1pos, and CD56dimDNAM-1neg NK cell subsets were

purified from healthy donor PBMCs and cultured for 4 days in the presence of IL-2 (600 IU) (A) or IL-12 (10 ng/mL), IL-15 (100 ng/mL), and IL-18 (50 ng/mL) (B). At days 1,

2, and 4, NK cells were analyzed by using flow cytometry for surface expression of CD56 and DNAM-1. Results are displayed as the percentage of cells falling within

CD56brightDNAM-1pos, CD56dimDNAM-1pos, or CD56dimDNAM-1neg gates. Data are shown as the mean 6 SEM of duplicate wells from 5 individual donors pooled from 3

independent experiments. (C) Telomere length was determined by hybridization of a fluorescein isothiocyanate–labeled peptide nucleic acid probe to telomeric repeats in the

DNA of NK cell subsets. For each NK cell subset, mean fluorescence intensity (MFI) values of the incorporated probe was normalized to K562 control cell fluorescence. Data

are shown as mean 6 SEM values obtained for 6 individual donors and are pooled from 3 independent experiments, with each symbol representing one individual donor. No

significant difference was found by using a 1-way ANOVA on paired values. (D-E) Purified CD56brightDNAM-1pos, CD56dimDNAM-1pos, and CD56dimDNAM-1neg NK cells were

cultured overnight in the absence (D) or presence (E) of IL-12 (10 ng/mL), IL-15 (100 ng/mL), and IL-18 (50 ng/mL). Apoptosis was determined by measuring Annexin V

uptake by using flow cytometry. Data are shown as mean 6 SEM from 5 individual donors. Individual dots represent the mean value of duplicate wells, with each symbol

representing one individual donor. Data were analyzed by using a 1-way ANOVA on paired values followed by a Tukey multiple comparison post hoc test. *P , .05; **P , .01.
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Intriguingly, increased CD107a expression observed on the mem-
brane of K562-stimulated CD56dimDNAM-1neg NK cells did not
translate into effective cytotoxicity. Several hypotheses can explain

these contradictory results. First, the granules released by
CD56dimDNAM-1neg NK cells may not contain the cytotoxic
molecules required for target cell killing, a hypothesis supported by

B

Healthy HL DLBCL
0

10

20

30

40

%
 o

f N
K 

ce
lls

**
**

A

105

104

103

0

-103

1030 104 1030 104 1030 104

105

104

103

0

-103

105

104

103

0

-103CD
56

CD3

Healthy HL DLBCL

14.9 8.86 6.75

CD56bright

DNAM-1pos
CD56dim

DNAM-1pos
CD56dim

DNAM-1neg

0

20

40

60

80

100
*

*

%
 o

f s
ub

se
t w

ith
in 

NK
 c

ell
s

C

20

15

10

5

0
CD56bright

DNAM-1pos
CD56dim

DNAM-1pos
CD56dim

DNAM-1neg

%
 o

f s
ub

se
t w

ith
in 

lym
ph

oc
yte

s

****
**** HD

HL

DLBCL

D

60

40

20

0

DN
AM

-1
po

s /D
NA

M-
1ne

g

Healthy HL DLBCL

***
*

E

CD56bright

DNAM-1+
CD56dim

DNAM-1+
CD56dim

DNAM-1-

%
 d

ea
d 

ta
rg

et
 c

ell
s

Healthy
HL
DLBCL

40

30

20

10

0

****
*

Figure 7. CD56
dim

DNAM-1
neg

NK cells are enriched in the peripheral blood of patients with hematologic malignancies. (A-B) NK cell proportions in peripheral

blood of patients with HL or DLBCL compared with that of age- and sex-matched healthy control donors was determined via flow cytometry by gating on live CD3negCD56pos

NK cells. Representative fluorescence-activated cell sorter plots (A) and the mean 6 SEM of duplicate wells from 7 to 10 individual donors (B) from each group are shown.

(C) NK cell subset distribution was determined by flow cytometry from healthy donor and HL and DLBCL patient samples. Results are shown as the mean 6 SEM of subset

frequencies within the whole lymphocyte population (left) or the NK cell population (right). (D) Graph shows the ratio of CD56dimDNAM-1pos over CD56dimDNAM-1neg NK cell

as mean 6 SEM. (E) CD56brightDNAM-1pos, CD56dimDNAM-1pos, and CD56dimDNAM-1neg NK cell subsets were purified from healthy donor and HL or DLBCL PBMCs and

stimulated overnight in IL-12 (10 ng/mL), IL-15 (100 ng/mL), and IL-18 (50 ng/mL). The following day, cells were added to wells containing K562 target cells in a 10:1 effector:

target ratio. After 4 hours of culture, cytotoxicity of NK cell subsets against K562 target cells was measured by fluorescence-activated cell sorter staining for Annexin V/PI.

Results are shown as mean 6 SEM from 4 individual donors run in duplicate and pooled from 2 independent experiments. Individual dots represent the mean value of duplicate

wells. Data were analyzed with a 1-way ANOVA (B,D) or a 2-way ANOVA (C,E) followed by a Tukey multiple comparison post hoc test. *P , .05; **P , .01; ***P , .001;

****P , .0001.
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the low expression of granzyme B of CD56dimDNAM-1neg NK cells.
Alternatively, limited expression of LFA-1 on CD56dimDNAM-1neg

cells coupled with the absence of DNAM-1–triggered inside-out
LFA-1 signaling might have led to nonpolarized degranulation and
limited killing of target cells.38,39 Finally, similarly to what has been
described for CD16,40 NK cells might downregulate DNAM-1 after
degranulation. In this case, higher percentage of CD107a1 cells
within the CD56dimDNAM-1neg NK cell population might only be
a consequence of their terminal differentiation from degranulating
CD56dimDNAM-1pos NK cells.

Although CD56dimDNAM-1neg NK cells were limited in their ability
to perform “classical” NK cell functions (ie, killing and IFN-g
secretion), our data indicate that these cells might represent an
immunomodulatory subset. Although NK cells are known to play an
immunoregulatory role in autoimmune diseases by the elimination of
chronically activated immune cells,41,42 this study is the first to
indicate the self-regulation of NK cell cytotoxicity by the secretion of
soluble factors from a terminally differentiated NK cell subset. The
soluble factors implicated in this process remain to be identified.
One main candidate is prostaglandin E231,43,44 as our RNAseq
analysis identified increased expression of ptges in CD56dimDNAM-
1neg NK cells.

We observed a profound decline in the ratio of CD56dimDNAM-1pos

over CD56dimDNAM-1neg NK cell subsets in the blood of patients
with HL and DLBCL that may be attributed to decreased numbers
of CD56dimDNAM-1pos NK cells. In addition, we showed that, in
patients with lymphoma, CD56dimDNAM-1pos NK cells present
reduced cytotoxic activity. The decreased numbers and functionality
of cytotoxic CD56dimDNAM-1pos NK cells associated with over-
representation of potentially immunosuppressive CD56dimDNAM-
1neg NK cells are likely to affect the efficacy of NK cell–targeting
strategies in patients with lymphoma.

In conclusion, we identified a population of terminally differentiated
CD56dimDNAM-1neg circulating human NK cells that are propor-
tionally more represented in the blood of patients with HL and
DLBCL. Because CD56dimDNAM-1neg NK cells are poor effectors
and potentially immunosuppressive, this population is likely to affect
the quality of ex vivo expanded NK cells for autologous cell transfer
therapies. Future research should investigate whether depleting the
CD56dimDNAM-1neg NK cells before culturing could improve the
killing activity of patient NK cells and show better antilymphoma
effect.
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